Copied to
clipboard

G = C12.5C42order 192 = 26·3

5th non-split extension by C12 of C42 acting via C42/C22=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C12.5C42, C42.186D6, C4.Dic3:9C4, (C2xC6).5C42, C4.5(C4xDic3), C6.35(C8oD4), C4:C4.10Dic3, C6.21(C2xC42), C3:3(C8o2M4(2)), (C22xC4).352D6, C22:C4.6Dic3, C22.5(C4xDic3), C42:C2.14S3, (C4xC12).231C22, C12.136(C22xC4), (C2xC12).845C23, C42.S3:21C2, C2.1(D4.Dic3), C23.19(C2xDic3), (C22xC12).147C22, C22.21(C22xDic3), (C2xC3:C8):7C4, (C4xC3:C8):25C2, (C3xC4:C4).7C4, C3:C8.23(C2xC4), C4.110(S3xC2xC4), (C2xC4).80(C4xS3), (C22xC3:C8).6C2, C2.10(C2xC4xDic3), (C2xC12).88(C2xC4), (C3xC22:C4).7C4, (C2xC3:C8).332C22, (C22xC6).56(C2xC4), (C2xC4).42(C2xDic3), (C2xC6).182(C22xC4), (C2xC4).787(C22xS3), (C3xC42:C2).6C2, (C2xC4.Dic3).17C2, SmallGroup(192,556)

Series: Derived Chief Lower central Upper central

C1C6 — C12.5C42
C1C3C6C12C2xC12C2xC3:C8C22xC3:C8 — C12.5C42
C3C6 — C12.5C42
C1C2xC4C42:C2

Generators and relations for C12.5C42
 G = < a,b,c | a12=c4=1, b4=a6, bab-1=a5, cac-1=a7, bc=cb >

Subgroups: 200 in 130 conjugacy classes, 87 normal (25 characteristic)
C1, C2, C2, C2, C3, C4, C4, C4, C22, C22, C22, C6, C6, C6, C8, C2xC4, C2xC4, C23, C12, C12, C12, C2xC6, C2xC6, C2xC6, C42, C22:C4, C4:C4, C2xC8, M4(2), C22xC4, C3:C8, C2xC12, C2xC12, C22xC6, C4xC8, C8:C4, C42:C2, C22xC8, C2xM4(2), C2xC3:C8, C2xC3:C8, C4.Dic3, C4xC12, C3xC22:C4, C3xC4:C4, C22xC12, C8o2M4(2), C4xC3:C8, C42.S3, C22xC3:C8, C2xC4.Dic3, C3xC42:C2, C12.5C42
Quotients: C1, C2, C4, C22, S3, C2xC4, C23, Dic3, D6, C42, C22xC4, C4xS3, C2xDic3, C22xS3, C2xC42, C8oD4, C4xDic3, S3xC2xC4, C22xDic3, C8o2M4(2), C2xC4xDic3, D4.Dic3, C12.5C42

Smallest permutation representation of C12.5C42
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 58 10 55 7 52 4 49)(2 51 11 60 8 57 5 54)(3 56 12 53 9 50 6 59)(13 46 22 43 19 40 16 37)(14 39 23 48 20 45 17 42)(15 44 24 41 21 38 18 47)(25 63 28 66 31 69 34 72)(26 68 29 71 32 62 35 65)(27 61 30 64 33 67 36 70)(73 85 76 88 79 91 82 94)(74 90 77 93 80 96 83 87)(75 95 78 86 81 89 84 92)
(1 28 42 75)(2 35 43 82)(3 30 44 77)(4 25 45 84)(5 32 46 79)(6 27 47 74)(7 34 48 81)(8 29 37 76)(9 36 38 83)(10 31 39 78)(11 26 40 73)(12 33 41 80)(13 88 57 71)(14 95 58 66)(15 90 59 61)(16 85 60 68)(17 92 49 63)(18 87 50 70)(19 94 51 65)(20 89 52 72)(21 96 53 67)(22 91 54 62)(23 86 55 69)(24 93 56 64)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,58,10,55,7,52,4,49)(2,51,11,60,8,57,5,54)(3,56,12,53,9,50,6,59)(13,46,22,43,19,40,16,37)(14,39,23,48,20,45,17,42)(15,44,24,41,21,38,18,47)(25,63,28,66,31,69,34,72)(26,68,29,71,32,62,35,65)(27,61,30,64,33,67,36,70)(73,85,76,88,79,91,82,94)(74,90,77,93,80,96,83,87)(75,95,78,86,81,89,84,92), (1,28,42,75)(2,35,43,82)(3,30,44,77)(4,25,45,84)(5,32,46,79)(6,27,47,74)(7,34,48,81)(8,29,37,76)(9,36,38,83)(10,31,39,78)(11,26,40,73)(12,33,41,80)(13,88,57,71)(14,95,58,66)(15,90,59,61)(16,85,60,68)(17,92,49,63)(18,87,50,70)(19,94,51,65)(20,89,52,72)(21,96,53,67)(22,91,54,62)(23,86,55,69)(24,93,56,64)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,58,10,55,7,52,4,49)(2,51,11,60,8,57,5,54)(3,56,12,53,9,50,6,59)(13,46,22,43,19,40,16,37)(14,39,23,48,20,45,17,42)(15,44,24,41,21,38,18,47)(25,63,28,66,31,69,34,72)(26,68,29,71,32,62,35,65)(27,61,30,64,33,67,36,70)(73,85,76,88,79,91,82,94)(74,90,77,93,80,96,83,87)(75,95,78,86,81,89,84,92), (1,28,42,75)(2,35,43,82)(3,30,44,77)(4,25,45,84)(5,32,46,79)(6,27,47,74)(7,34,48,81)(8,29,37,76)(9,36,38,83)(10,31,39,78)(11,26,40,73)(12,33,41,80)(13,88,57,71)(14,95,58,66)(15,90,59,61)(16,85,60,68)(17,92,49,63)(18,87,50,70)(19,94,51,65)(20,89,52,72)(21,96,53,67)(22,91,54,62)(23,86,55,69)(24,93,56,64) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,58,10,55,7,52,4,49),(2,51,11,60,8,57,5,54),(3,56,12,53,9,50,6,59),(13,46,22,43,19,40,16,37),(14,39,23,48,20,45,17,42),(15,44,24,41,21,38,18,47),(25,63,28,66,31,69,34,72),(26,68,29,71,32,62,35,65),(27,61,30,64,33,67,36,70),(73,85,76,88,79,91,82,94),(74,90,77,93,80,96,83,87),(75,95,78,86,81,89,84,92)], [(1,28,42,75),(2,35,43,82),(3,30,44,77),(4,25,45,84),(5,32,46,79),(6,27,47,74),(7,34,48,81),(8,29,37,76),(9,36,38,83),(10,31,39,78),(11,26,40,73),(12,33,41,80),(13,88,57,71),(14,95,58,66),(15,90,59,61),(16,85,60,68),(17,92,49,63),(18,87,50,70),(19,94,51,65),(20,89,52,72),(21,96,53,67),(22,91,54,62),(23,86,55,69),(24,93,56,64)]])

60 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E···4N6A6B6C6D6E8A···8H8I···8T12A12B12C12D12E···12N
order122222344444···4666668···88···81212121212···12
size111122211112···2222443···36···622224···4

60 irreducible representations

dim111111111122222224
type++++++++--+
imageC1C2C2C2C2C2C4C4C4C4S3D6Dic3Dic3D6C4xS3C8oD4D4.Dic3
kernelC12.5C42C4xC3:C8C42.S3C22xC3:C8C2xC4.Dic3C3xC42:C2C2xC3:C8C4.Dic3C3xC22:C4C3xC4:C4C42:C2C42C22:C4C4:C4C22xC4C2xC4C6C2
# reps122111884412221884

Matrix representation of C12.5C42 in GL4(F73) generated by

27000
14600
00172
0010
,
63000
06300
004627
00027
,
467100
722700
00270
00027
G:=sub<GL(4,GF(73))| [27,1,0,0,0,46,0,0,0,0,1,1,0,0,72,0],[63,0,0,0,0,63,0,0,0,0,46,0,0,0,27,27],[46,72,0,0,71,27,0,0,0,0,27,0,0,0,0,27] >;

C12.5C42 in GAP, Magma, Sage, TeX

C_{12}._5C_4^2
% in TeX

G:=Group("C12.5C4^2");
// GroupNames label

G:=SmallGroup(192,556);
// by ID

G=gap.SmallGroup(192,556);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,56,387,100,136,6278]);
// Polycyclic

G:=Group<a,b,c|a^12=c^4=1,b^4=a^6,b*a*b^-1=a^5,c*a*c^-1=a^7,b*c=c*b>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<